Isatin Bis-Indole and Bis-Imidazothiazole Hybrids: Synthesis and Antimicrobial Activity

Molecules. 2022 Sep 7;27(18):5781. doi: 10.3390/molecules27185781.

Abstract

Isatin and its derivatives are important heterocycles found in nature and present in numerous bioactive compounds which possess various biological activities. Moreover, it is an essential building block in organic synthesis. The discovery of novel compounds active against human pathogenic bacteria and fungi is an urgent need, and the isatin may represent the suitable scaffold in the design of biologically relevant antimicrobials. A small library of 18 isatin hybrids was synthetized and evaluated for their antimicrobial potential on three reference strains: S. aureus, E. coli, both important human pathogens infamous for causing community- and hospital-acquired severe systemic infections; and C. albicans, responsible for devastating invasive infections, mainly in immunocompromised individuals. The study highlighted two lead compounds, 6k and 6m, endowed with inhibitory activity against S. aureus at very low concentrations (39.12 and 24.83 µg/mL, respectively).

Keywords: antimicrobial agents; cytotoxicity; imidazo[2,1-b]thiazole; indole; isatin.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents* / pharmacology
  • Candida albicans
  • Escherichia coli
  • Humans
  • Indoles / pharmacology
  • Isatin* / pharmacology
  • Microbial Sensitivity Tests
  • Staphylococcus aureus
  • Structure-Activity Relationship

Substances

  • Anti-Bacterial Agents
  • Anti-Infective Agents
  • Indoles
  • Isatin

Grants and funding

This work was supported by the University of Bologna (RFO funds).