Characterization and Genetic Diversity of Bacillus cereus Strains Isolated from Baby Wipes

Microorganisms. 2022 Sep 3;10(9):1779. doi: 10.3390/microorganisms10091779.

Abstract

Bacillus cereus, a ubiquitous environmental microorganism known to cause foodborne illness, was isolated from samples taken from imported baby wipes from two different countries. These strains were characterized using a comprehensive molecular approach involving endpoint PCR, whole genome sequencing (WGS), comparative genomics, and biochemical analyses. A multiplex endpoint PCR assay was used to identify the enterotoxins: hemolysin BL, nonhemolytic enterotoxin, cytotoxin K, and enterotoxin FM toxin genes. Phylogenetically, the strains clustered into two major groups according to sequence type (ST) and singleton. We used the Center for Food Safety and Applied Nutrition (CFSAN) GalaxyTrakr BTyper computational tool to characterize the strains further. As an additional means of characterization, we investigated the possible role of carbohydrate transport systems and their role in nutrient uptake by performing a BLAST analysis of the 40 B. cereus genomes recovered from baby wipes. This study outlines a multifaceted workflow that uses the analysis of enterotoxigenic potential, bioinformatics, genomic diversity, genotype, phenotype, and carbohydrate utilization as a comprehensive strategy to characterize these B. cereus strains isolated from baby wipes and further our understanding of the phylogenetic relatedness of strains associated with baby wipe production facilities that could potentially pose an infection risk to a vulnerable infant population.

Keywords: BTyper; Bacillus cereus; WGS; baby wipes; carbohydrate utilization; genomic characterization.

Grants and funding

This research received no external funding.