Thiopurine S-Methyltransferase Polymorphisms Predict Hepatotoxicity in Azathioprine-Treated Patients with Autoimmune Diseases

J Pers Med. 2022 Aug 28;12(9):1399. doi: 10.3390/jpm12091399.

Abstract

Thiopurine methyltransferase (TPMT) is the rate-limiting enzyme in Azathioprine (AZA) metabolization. Although studies have discussed the association between the TPMT polymorphisms and myelosuppression, the data about the relationship between TPMT genotypes and hepatoxicity in Asian patients remain limited. This study investigated the correlation between TPMT polymorphisms and AZA-related hepatotoxicity. This study enrolled the patients who had prior exposure to AZA from the Taichung Veterans General Hospital (TCVGH)-Taiwan Precision Medicine Initiative (TPMI) cohort. Genetic variants were determined using a single nucleotide polymorphism (SNP) array. Participants were accordingly categorized into normal metabolizer (NM) and non-normal metabolizer (non-NM) groups. From the TCVGH-TPMI cohort, we included 50 TPMT non-NM patients, including 1 poor metabolizer (PM), 49 intermediate metabolizers (IMs), and 1000 NM patients. The non-NM genotype was associated with hepatotoxicity compared with the NM genotype (hazard ratio (HR): 3.85, 95% confidence interval (CI): 1.83−8.10). In the non-NM group, the 3-year cumulative incidence of hepatotoxicity was higher than that in the NM group at 8.5% in the first year and 18.6% in the second and third years (p < 0.001). A TPMT non-NM genotype was associated with the occurrence of hepatotoxicity following AZA therapy. Preemptive testing helps individualize AZA therapy by minimizing the risk of hepatotoxicity.

Keywords: AZA; TPMI; TPMT genotype; TPMT intermediate metabolizers; TPMT poor metabolizers; autoimmune disease; cumulative incidence of hepatotoxicity; hepatotoxicity; pharmacogenomics; preemptive genotyping.