Air Pollution Characteristics during the 2022 Beijing Winter Olympics

Int J Environ Res Public Health. 2022 Sep 15;19(18):11616. doi: 10.3390/ijerph191811616.

Abstract

Using air pollution monitoring data from 31 January to 31 March 2022, we evaluated air quality trends in Beijing and Zhangjiakou before and after the 2022 Winter Olympics and compared them with the conditions during the same period in 2021. The objective was to define the air quality during the 2022 Winter Olympics. The results indicated that: (1) the average concentrations of PM2.5, PM10, NO2, CO, and SO2 in Zhangjiakou during the 2022 Winter Olympics were 28.15, 29.16, 34.96, 9.06, and 16.41%, respectively, lower than those before the 2022 Winter Olympics; (2) the five pollutant concentrations in Beijing showed the following pattern: during the 2022 Winter Olympics (DWO) < before the 2022 Winter Olympics < after 2022 Winter Paralympics < during 2022 Winter Paralympics; (3) on the opening day (4 February), the concentrations of the five pollutants in both cities were low. PM2.5 and PM10 concentrations varied widely without substantial peaks and the daily average maximum values were 15.17 and 8.67 µg/m3, respectively, which were 65.56 and 69.79% lower than those of DWO, respectively; (4) the PM2.5 clean days in Beijing and Zhangjiakou DWO accounted for 94.12 and 76.47% of the total days, respectively, which were 11.76 and 41.18% higher than those during the same period in 2021; (5) during each phase of the 2022 Winter Olympics in Beijing and Zhangjiakou, the NO2/SO2 and PM2.5/SO2 trends exhibited a decrease followed by an increase. The PM2.5/PM10 ratios in Beijing and Zhangjiakou were 0.65 and 0.67, respectively, indicating that fine particulate matter was the main contributor to air pollution DWO.

Keywords: 2022 Winter Olympics; air pollutants; air quality; combined indicators; influencing factor; particulate matter; pollution control effectiveness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution* / analysis
  • Beijing
  • China
  • Cities
  • Environmental Monitoring / methods
  • Nitrogen Dioxide
  • Particulate Matter / analysis
  • Seasons

Substances

  • Air Pollutants
  • Particulate Matter
  • Nitrogen Dioxide

Grants and funding

This research was supported by the National Natural Science Foundation of China (Grant No. 42071422).