Resistance of Streptococcus suis Isolates from the Czech Republic during 2018-2022

Antibiotics (Basel). 2022 Sep 7;11(9):1214. doi: 10.3390/antibiotics11091214.

Abstract

A determination of susceptibility/resistance to antimicrobials via serotype was carried out in 506 field isolates of Streptococcus suis, originating from pig farms in the Czech Republic in the period 2018-2022. A very high level of susceptibility of S. suis isolates was found to amoxicillin, in combination with clavulanic acid and sulfamethoxazole potentiated with trimethoprim. None of the tested isolates were resistant to these antimicrobial substances. Only two isolates were found to be intermediately resistant to enrofloxacin in 2020. With regard to ceftiofur, one isolate was intermediately resistant in 2020 and 2022, and two isolates were intermediately resistant in 2018 and 2021. A low level of resistance was detected to ampicillin (0.6% in 2021) and to florfenicol (1.15% in 2019; 1.3% in 2022). With regard to penicillin, a medium level of resistance was detected in 2018 (10.6%), but a low level of resistance was found in the following years (7.0% in 2019; 3.1% in 2020; 3.3% in 2021; 3.9% in 2022). On the contrary, a high or very high level of resistance was found to tetracycline (66.0% in 2018; 65.1% in 2019; 44.35% in 2020; 46.4% in 2021; 54.0% in 2022). Using molecular and serological methods, serotype 7 (16.4%) was determined to be predominant among S. suis isolates, followed by serotypes 1/2, 2, 9, 4, 3, 1, 29, 16, and 31 (10.7%; 8.5%; 5.7%; 5.5%; 4.5%; 4.3%; 3.6%; 3.4%; 3.4%, respectively). Other serotypes were identified among the investigated strains either rarely (up to 10 cases) or not at all. A relatively high percentage of isolates were detected as non-typeable (79 isolates; 15.6%). Dependence of resistance upon serotype assignment could not be proven in all but serotype 31, wherein all isolates (n = 17) were resistant or intermediately resistant to clindamycin, tilmycosin, tulathromycin, and tetracycline. The resistance to clindamycin and tetracycline may be related to the high consumption of these antibiotics on pig farms at present or in previous years. Macrolides (tilmicosin and tulathromycin) and tiamulin are not suitable for the treatment of streptococcal infections, but are used on pig farms to treat respiratory infections caused by gram-negative bacteria, so they were included in the study.

Keywords: antimicrobial susceptibility testing; infectious disease; minimal inhibitory concentration; pigs; serotypization.