Investigation of Scaling and Inhibition Mechanisms in Reverse Osmosis Spiral Wound Elements

Membranes (Basel). 2022 Aug 31;12(9):852. doi: 10.3390/membranes12090852.

Abstract

Understanding of crystal formation and growth conditions in reverse osmosis membrane channels enables us to develop efficient tools to control scaling in membrane facilities and increase their recoveries. Crystals are formed in "dead areas" and subsequently get out of them and sediment on membrane surface. Adsorption of polymeric inhibitor molecules to crystal surface was investigated as well as antiscalant behaviour throughout nucleation in "dead areas" and growth of crystals sedimented on membrane surface. Experimental dependencies of antiscalant adsorption rates on the antiscalant dosage values were determined. Examination of SEM images of crystals demonstrated that their size and amount depend on the supersaturation value reached in the "dead areas". More efficient antiscalants delay the beginning of nucleation and reduce the rate of crystal growth due to adsorption and blockage of crystal growth process. Antiscaling property of inhibitors is also attributed to their ability to provide certain amount of adsorbent to block crystal growth during nucleation. A test procedure is described that enables us to predict concentrate composition in the "dead areas" and calculate supersaturation values that correspond to beginning of nucleation.

Keywords: antiscalants; calcium carbonate; crystallization mechanisms; nucleation; reverse osmosis; scaling mechanism.