Enhanced broadband absorption with a twisted multilayer metal-dielectric stacking metamaterial

Nanoscale Adv. 2021 Jul 6;3(16):4804-4809. doi: 10.1039/d1na00372k. eCollection 2021 Aug 10.

Abstract

This study proposes and experimentally demonstrates enhanced broadband absorption with twisted multilayer metal-dielectric stacking. Compared with the traditional metal-dielectric pyramid, the resonance frequencies of the third-order magnetic resonances in the twisted quadrangular frustum redshifted obviously. Hence, the proposed structure enables an ultra-broadband absorption by combining the third-order magnetic resonances with the fundamental mode. The broadband absorption is insensitive to the incident wave polarization, whereas the twisted angle of the stacking plays an important role in deciding the absorption bandwidth. The sample was fabricated via the multi-material hybrid micro-droplet jetting modeling (MHMJM) technology to verify the enhanced absorbing performance. The measured results suggest that the proposed strategy provides a potential path to realize broadband electromagnetic wave absorption. Moreover, it is possible to extend the twisted metamaterial to the terahertz and infrared frequencies using the advanced nano fabrication techniques.