Continuous treatment of diethyl hexyl and dibutyl phthalates by fixed-bed reactor: Comparison of two esterase bionanocomposites

Bioresour Technol. 2022 Nov:363:127990. doi: 10.1016/j.biortech.2022.127990. Epub 2022 Sep 18.

Abstract

The removal of Diethyl hexyl phthalate (DEHP) and Dibutyl phthalate (DBP) is of great importance due to their potential adverse effects on the environment and human health. In this study, two bionanocomposites prepared by immobilization of Bacillus subtilis esterase by crosslinking to halloysite and supported in chitosan and alginate beads were studied and proposed as a green approach. The esterase immobilization was confirmed by physical-chemical characterization. Bionanocomposite using chitosan showed the best degradation levels in batch tests attaining complete degradation of DBP and around 90% of DEHP. To determine the operational stability and efficiency of the system, two fixed bed reactors filled with both bionanocomposites were carried out operating in continuous mode. Chitosan based bionanocomposite showed the best performance being able to completely remove DBP and more than 85% of DEHP at the different flowrates. These results proved the potential of these synthesized bionanocomposites to effectively remove Phthalic Acid Esters.

Keywords: Bacillus subtilis; Enzymatic degradation; Halloysite; Immobilization; Phthalic acid esters.

Publication types

  • Comparative Study

MeSH terms

  • Alginates
  • Chitosan*
  • Clay
  • Dibutyl Phthalate / metabolism
  • Diethylhexyl Phthalate*
  • Esterases
  • Esters / chemistry
  • Humans
  • Phthalic Acids* / metabolism

Substances

  • Alginates
  • Chitosan
  • Clay
  • Dibutyl Phthalate
  • Diethylhexyl Phthalate
  • Esterases
  • Esters
  • Phthalic Acids