A novel dual-capability naphthalimide-based fluorescent probe for Fe3+ ion detection and lysosomal tracking in living cells

RSC Adv. 2022 Aug 26;12(37):24252-24259. doi: 10.1039/d2ra03688f. eCollection 2022 Aug 22.

Abstract

We design and synthesize a novel 1,8-naphthalimide-based fluorescent probe MNP that features the dual capabilities of tracking lysosomes in living HeLa cells and sensitively detecting Fe3+ ions in aqueous solution. The MNP is obtained by modifying the morpholine group with a lysosomal targeting function and the piperazine group with an Fe3+ ion recognition function on the 1,8-naphthalimide matrix. In the presence of Fe3+ ions, the MNP acts as a recognition ligand to coordinate with the central Fe3+ ion, and the protonated [MNPH]+ is eventually generated, in which significant fluorescence enhancements are observed due to the intramolecular photo-induced electron transfer (PET) process being blocked. The limit of detection of Fe3+ ions is as low as 65.2 nM. A cell imaging experiment shows that the MNP has low cytotoxicity and excellent lysosomal targeting ability. Therefore, the MNP offers a promising tool for lysosomal tracking and relevant life process research.