Design and application of improved sparrow search algorithm based on sine cosine and firefly perturbation

Math Biosci Eng. 2022 Aug 10;19(11):11422-11452. doi: 10.3934/mbe.2022533.

Abstract

Swarm intelligence algorithms are relatively simple and highly applicable algorithms, especially for solving optimization problems with high reentrancy, high stochasticity, large scale, multi-objective and multi-constraint characteristics. The sparrow search algorithm (SSA) is a kind of swarm intelligence algorithm with strong search capability, but SSA has the drawback of easily falling into local optimum in the iterative process. Therefore, a sine cosine and firefly perturbed sparrow search algorithm (SFSSA) is proposed for addressing this deficiency. Firstly, the Tent chaos mapping is invoked in the initialization population stage to improve the population diversity; secondly, the positive cosine algorithm incorporating random inertia weights is introduced in the discoverer position update, so as to improve the probability of the algorithm jumping out of the local optimum and speed up the convergence; finally, the firefly perturbation is used to firefly perturb the sparrows, and all sparrows are updated with the optimal sparrows using the firefly perturbation method to improve their search-ability. Thirteen benchmark test functions were chosen to evaluate SFSSA, and the results were compared to those computed by existing swarm intelligence algorithms, as well as the proposed method was submitted to the Wilcoxon rank sum test. Furthermore, the aforesaid methods were evaluated in the CEC 2017 test functions to further validate the optimization efficiency of the algorithm when the optimal solution is not zero. The findings show that SFSSA is more favorable in terms of algorithm performance, and the method's searchability is boosted. Finally, the suggested algorithm is used to the locating problem of emergency material distribution centers to further validate the feasibility and efficacy of SFSSA.

Keywords: Tent chaotic mapping; contingency site selection; firefly perturbation strategy; positive cosine algorithm; sparrow search algorithm.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Animals
  • Fireflies*
  • Probability
  • Problem Solving