Determinants of exercise capacity in patients with heart failure without left ventricular hypertrophy

J Cardiol. 2023 Jan;81(1):33-41. doi: 10.1016/j.jjcc.2022.09.004. Epub 2022 Sep 17.

Abstract

Background: Determinants of exercise intolerance in a phenotype of heart failure with preserved ejection fraction (HFpEF) with normal left ventricular (LV) structure have not been fully elucidated.

Methods: Cardiopulmonary exercise testing and exercise-stress echocardiography were performed in 44 HFpEF patients without LV hypertrophy. Exercise capacity was determined by peak oxygen consumption (peak VO2). Doppler-derived cardiac output (CO), transmitral E velocity, systolic (LV-s') and early diastolic mitral annular velocities (e'), systolic pulmonary artery (PA) pressure (SPAP), tricuspid annular plane systolic excursion (TAPSE), and peak systolic right ventricular (RV) free wall velocity (RV-s') were measured at rest and exercise. E/e' and TAPSE/SPAP were used as an LV filling pressure parameter and RV-PA coupling, respectively.

Results: During exercise, CO, LV-s', RV-s', e', and SPAP were significantly increased (p < 0.05 for all), whereas E/e' remained unchanged and TAPSE/SPAP was significantly reduced (p < 0.001). SPAP was higher and TAPSE/SPAP was lower at peak exercise in patients showing lower-half peak VO2. In univariable analyses, LV-s' (R = 0.35, p = 0.022), SPAP (R = -0.40, p = 0.008), RV-s' (R = 0.47, p = 0.002), and TAPSE/SPAP (R = 0.42, p = 0.005) were significantly correlated with peak VO2. In multivariable analyses, not only SPAP, but also TAPSE/SPAP independently determined peak VO2 even after the adjustment for clinically relevant parameters.

Conclusions: In HFpEF patients without LV hypertrophy, altered RV-PA coupling by exercise could be associated with exercise intolerance, which might not be caused by elevated LV filling pressure.

Keywords: Cardiac magnetic resonance; Exercise echocardiography; Heart failure with preserved ejection fraction; Pulmonary hypertension.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Exercise Tolerance
  • Heart Failure*
  • Heart Ventricles
  • Humans
  • Hypertrophy, Left Ventricular
  • Stroke Volume