Field evaluation of the effect of Aspergillus niger on lettuce growth using conventional measurements and a high-throughput phenotyping method based on aerial images

PLoS One. 2022 Sep 19;17(9):e0274731. doi: 10.1371/journal.pone.0274731. eCollection 2022.

Abstract

Plant microbiome engineering is a promising tool to unlock crop productivity potential and exceed the yield obtained with conventional chemical inputs. We studied the effect of Aspergillus niger inoculation on in-field lettuce (Lactuca sativa) growth in soils with limiting and non-limiting P concentrations. Lettuce plants originating from inoculated seeds showed increased plant diameter (6.9%), number of leaves (8.1%), fresh weight (23.9%), and chlorophyll content (3.8%) as compared to non-inoculated ones. Inoculation of the seedling substrate just before transplanting was equally efficient to seed inoculation, while application of a granular formulation at transplanting did not perform well. Plant response to P addition was observed only up to 150 kg P2O5 ha-1, but A. niger inoculation allowed further increments in all vegetative parameters. We also employed a high-throughput phenotyping method based on aerial images, which allowed us to detect changes in plants due to A. niger inoculation. The visible atmospherically resistant index (VARI) produced an accurate prediction model for chlorophyll content, suggesting this method might be used to large-scale surveys of croplands inoculated with beneficial microorganisms. Our findings demonstrate that A. niger inoculation surpasses the yield obtained with conventional chemical inputs, allowing productivity gains not reached by just increasing P doses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aspergillus niger*
  • Chlorophyll
  • Lactuca*
  • Seedlings
  • Soil

Substances

  • Soil
  • Chlorophyll

Grants and funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), grant number APQ-01842-17 to GOM, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant number 407793/2021-6 to GOM, and NOOA Ciência e Tecnologia Agrícola Ltda, grant to GOM and PVS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.