Pillar Modularity in fsc Topology Hybrid Ultramicroporous Materials Based upon Tetra(4-pyridyl)benzene

Cryst Growth Des. 2022 Sep 7;22(9):5472-5480. doi: 10.1021/acs.cgd.2c00561. Epub 2022 Aug 19.

Abstract

Hybrid ultramicroporous materials (HUMs) are porous coordination networks composed of combinations of organic and inorganic linker ligands with a pore diameter of <7 Å. Despite their benchmark gas sorption selectivity for several industrially relevant gas separations and their inherent modularity, the structural and compositional diversity of HUMs remains underexplored. In this contribution, we report a family of six HUMs (SIFSIX-22-Zn, TIFSIX-6-Zn, SNFSIX-2-Zn, GEFSIX-4-Zn, ZRFSIX-3-Zn, and TAFSEVEN-1-Zn) based on Zn metal centers and the tetratopic N-donor organic ligand tetra(4-pyridyl)benzene (tepb). The incorporation of fluorinated inorganic pillars (SiF6 2-, TiF6 2-, SnF6 2-, GeF6 2-, ZrF6 2-, and TaF7 2-, respectively) resulted in (4,6)-connected fsc topology as verified using single-crystal X-ray diffraction. Pure-component gas sorption studies with N2, CO2, C2H2, C2H4, and C2H6 revealed that the large voids and narrow pore windows common to all six HUMs can be leveraged to afford high C2H2 uptakes while retaining high ideal adsorbed solution theory (IAST) selectivities for industrially relevant gas mixtures: >10 for 1:99 C2H2/C2H4 and >5 for 1:1 C2H2/CO2. The approach taken, systematic variation of pillars with retention of structure, enables differences in selectivity to be attributed directly to the choice of the inorganic pillar. This study introduces fsc topology HUMs as a modular platform that is amenable to fine-tuning of structure and properties.