Differential Impact of Renal Function on the Diagnostic Performance of Resting Full-Cycle Ratio in Patients With Renal Dysfunction

Circ Rep. 2022 Aug 24;4(9):439-446. doi: 10.1253/circrep.CR-22-0069. eCollection 2022 Sep 9.

Abstract

Background: Physiological assessments using fractional flow reserve (FFR) and resting full-cycle ratio (RFR) have been recommended for revascularization decision making. Previous studies have shown a 20% rate of discordance between FFR and RFR. In this context, the correlation between RFR and FFR in patients with renal dysfunction remains unclear. This study examined correlations between RFR and FFR according to renal function. Methods and Results: In all, 263 consecutive patients with 370 intermediate lesions were enrolled in the study. Patients were classified into 3 groups according to renal function: Group 1, estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2; Group 2, 30 mL/min/1.73 m2≤eGFR<60 mL/min/1.73 m2; Group 3, eGFR <30 mL/min/1.73 m2. The discordance between FFR and RFR was assessed using known cut-off values for FFR (≤0.80) and RFR (≤0.89). Of the 370 lesions, functional significance with FFR was observed in 154 (41.6%). RFR was significantly correlated with FFR in all groups (Group 1, R2=0.62 [P<0.001]; Group 2, R2=0.67 [P<0.001]; Group 3, R2=0.46 [P<0.001]). The rate of discordance between RFR and FFR differed significantly among the 3 groups (Group 1, 18.8%; Group 2, 18.5%; Group 3, 42.9%; P=0.02). Conclusions: The diagnostic performance of RFR differed based on renal function. A better understanding of the clinical factors contributing to FFR/RFR discordance, such as renal function, may facilitate the use of these indices.

Keywords: Chronic kidney disease; Coronary artery disease; Fractional flow ratio; Resting full-cycle ratio.