Functional imaging of brain organoids using high-density microelectrode arrays

MRS Bull. 2022;47(6):530-544. doi: 10.1557/s43577-022-00282-w. Epub 2022 Jun 30.

Abstract

Abstract: Studies have provided evidence that human cerebral organoids (hCOs) recapitulate fundamental milestones of early brain development, but many important questions regarding their functionality and electrophysiological properties persist. High-density microelectrode arrays (HD-MEAs) represent an attractive analysis platform to perform functional studies of neuronal networks at the cellular and network scale. Here, we use HD-MEAs to derive large-scale electrophysiological recordings from sliced hCOs. We record the activity of hCO slices over several weeks and probe observed neuronal dynamics pharmacologically. Moreover, we present results on how the obtained recordings can be spike-sorted and subsequently studied across scales. For example, we show how to track single neurons across several days on the HD-MEA and how to infer axonal action potential velocities. We also infer putative functional connectivity from hCO recordings. The introduced methodology will contribute to a better understanding of developing neuronal networks in brain organoids and provide new means for their functional characterization.

Impact statement: Human cerebral organoids (hCOs) represent an attractive in vitro model system to study key physiological mechanisms underlying early neuronal network formation in tissue with healthy or disease-related genetic backgrounds. Despite remarkable advances in the generation of brain organoids, knowledge on the functionality of their neuronal circuits is still scarce. Here, we used complementary metal-oxide-semiconductor (CMOS)-based high-density microelectrode arrays (HD-MEAs) to perform large-scale recordings from sliced hCOs over several weeks and quantified their activity across scales. Using single-cell and network metrics, we were able to probe aspects of hCO neurophysiology that are more difficult to obtain with other techniques, such as patch clamping (lower yield) and calcium imaging (lower temporal resolution). These metrics included, for example, extracellular action potential (AP) waveform features and axonal AP velocity at the cellular level, as well as functional connectivity at the network level. Analysis was enabled by the large sensing area and the high spatiotemporal resolution provided by HD-MEAs, which allowed recordings from hundreds of neurons and spike sorting of their activity. Our results demonstrate that HD-MEAs provide a multi-purpose platform for the functional characterization of hCOs, which will be key in improving our understanding of this model system and assessing its relevance for translational research.

Supplementary information: The online version contains supplementary material available at 10.1557/s43577-022-00282-w.

Keywords: Bioelectronic; Biological; Microelectronics.