Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models

In Silico Pharmacol. 2022 Sep 16;10(1):17. doi: 10.1007/s40203-022-00132-2. eCollection 2022.

Abstract

Medicinally active compounds in the flavonoid class of phytochemicals are being studied for antiviral action against various DNA and RNA viruses. Quercetin is a flavonoid present in a wide range of foods, including fruits and vegetables. It is said to be efficient against a wide range of viruses. This research investigated the usefulness of Quercetin against Hepatitis C virus, Dengue type 2 virus, Ebola virus, and Influenza A using computational models. A molecular docking study using the online tool PockDrug was accomplished to identify the best binding sites between Quercetin and PubChem-based receptors. Network-pharmacological assay to opt to verify function-specific gene-compound interactions using STITCH, STRING, GSEA, Cytoscape plugin cytoHubba. Quercetin explored tremendous binding affinity against NS5A protein for HCV with a docking score of - 6.268 kcal/mol, NS5 for DENV-2 with a docking score of - 5.393 kcal/mol, VP35 protein for EBOV with a docking score of - 4.524 kcal/mol, and NP protein for IAV with a docking score of - 6.954 kcal/mol. In the network-pharmacology study, out of 39 hub genes, 38 genes have been found to interact with Quercetin and the top interconnected nodes in the protein-protein network were (based on the degree of interaction with other nodes) AKT1, EGFR, SRC, MMP9, MMP2, KDR, IGF1R, PTK2, ABCG2, and MET. Negative binding energies were noticed in Quercetin-receptor interaction. Results demonstrate that Quercetin could be a potential antiviral agent against these viral diseases with further study in in-vivo models.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-022-00132-2.

Keywords: Antiviral action; Dengue; Flavonoid; Hepatitis C virus; Influenza; Quercetin; SARSCOV-2.