Submerged fermentation improves bioactivity of mulberry fruits and leaves

Chin Herb Med. 2021 Sep 9;13(4):565-572. doi: 10.1016/j.chmed.2021.09.003. eCollection 2021 Oct.

Abstract

Objective: Mulberry (Morus spp.) fruits and leaves have been proven to possess nutraceutical properties. Due to its fast and easy growing characteristics, mulberry fruits (MF) and leaves (ML) potentially emerge as a great source of functional foods. This study aims to enhance bioactivities (antioxidant, anti-inflammation, and hypoglycemic activity) of MF and ML via submerged fermentation using bacteria (Lactobacillus plantarum TAR 4), yeast (Baker's yeast and red yeast) and fungi (Tempeh and Tapai starter).

Methods: In this study, 25% (mass to volume ratio) of MF and ML were fermented (48 h) with 1% (mass to volume ratio) of different microbial cultures, respectively. Effects of different fermentations on MF and ML were determined based on the changes of total phenolics (TPC), flavonoids (TFC), anthocyanins, total sugar, DPPH activity, ferric reducing antioxidant power (FRAP), albumin denaturation inhibition activity (ADI), anti-lipoxygenase activity and α-amylase inhibition activity (AI).

Results: Generally, ML had higher AI than MF. However, MF exhibited higher DPPH, FRAP and anti-lipoxygenase activity than ML. After all forms of fermentation, DPPH and AI activity of MF and ML were increased significantly (P < 0.05). However, the effects of fermentation on TPC, FRAP, ADI and anti-lipoxygenase activity of MF were in contrast with ML. TPC, FRAP and anti-lipoxygenase activity of ML were enhanced, but reduced in MF after fermentation. Although the effects exerted by different microorganisms in MF and ML fermentation were different, the bioactivities of MF and ML were generally improved after fermentation. Fermentation by Tempeh starter enhanced TPC (by 2-fold), FRAP (by 2.3-fold), AI (at 10% increment) and anti-lipoxygenase activity (by 5-fold) of ML, whereas Tapai fermentation effectively enhanced the DPPH (at 17% increment) and ADI (by 2-fold) activity of MF.

Conclusion: Findings of this study provide an insight into the future process design of MF and ML processing into novel functional foods.

Keywords: anti-inflammation activity; antioxidant activity; fermentation; hypoglycemic activity; mulberry fruits; mulberry leaves.