Genotypic and phenotypic characterization of industrial autochthonous Saccharomyces cerevisiae for the selection of well-adapted bioethanol-producing strains

Fungal Biol. 2022 Oct;126(10):658-673. doi: 10.1016/j.funbio.2022.08.004. Epub 2022 Aug 29.

Abstract

In northwestern Argentina, sugarcane-derived industrial fermentation is being extensively used for bioethanol production, where highly adaptive native strains compete with the baker's yeast Saccharomyces cerevisiae traditionally used as starter culture. Yeast populations of 10 distilleries from Tucumán (Argentina) were genotypic and phenotypic characterized to select well-adapted bioethanol-producing autochthonous strains to be used as starter cultures for the industrial production of bioethanol fuel. From the 192 isolates, 69.8% were identified as S. cerevisiae, 25.5% as non-Saccharomyces, and 4.7% as Saccharomyces sp. wild yeasts. The majority of S. cerevisiae isolates (68.5%) were non-flocculating yeasts, while the flocculating strains were all obtained from the only continuous fermentation process included in the study. Simple Sequence Repeat analysis revealed a high genetic diversity among S. cerevisiae genotypes, where all of them were very different from the original baker's strain used as starter. Among these, 38 strains multi-tolerant to stress by ethanol (8%), temperature (42.5 °C) and pH (2.0) were obtained. No major differences were found among these strains in terms of ethanol production and residual sugars in batch fermentation experiments with cell recycling. However, only 10 autochthonous strains maintained their viability (more than 80%) throughout five consecutive cycles of sugarcane-based fermentations. In summary, 10 autochthonous isolates were found to be superior to baker's yeast used as starter culture (S. cerevisiae Calsa) in terms of optimal technological, physiological and ecological properties. The knowledge generated on the indigenous yeast populations in industrial fermentation processes of bioethanol-producing distilleries allowed the selection of well-adapted bioethanol-producing strains.

Keywords: Autochthonous yeast; Industrial fermentation; Saccharomyces cerevisiae; Stress conditions; Sugarcane.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ethanol / metabolism
  • Genotype
  • Industrial Microbiology
  • Saccharomyces cerevisiae* / metabolism
  • Saccharum*
  • Sugars

Substances

  • Sugars
  • Ethanol