The Role of O-antigen in P1 Transduction of Shigella flexneri and Escherichia coli with its Alternative S' Tail Fibre

J Mol Biol. 2022 Nov 15;434(21):167829. doi: 10.1016/j.jmb.2022.167829. Epub 2022 Sep 15.

Abstract

Enterobacteria phage P1 expresses two types of tail fibre, S and S'. Despite the wide usage of phage P1 for transduction, the host range and the receptor for its alternative S' tail fibre was never determined. Here, a ΔS-cin Δpac E. coli P1 lysogenic strain was generated to allow packaging of phagemid DNA into P1 phage having either S or S' tail fibre. P1(S') could transduce phagemid DNA into Shigella flexneri 2a 2457O, Shigella flexneri 5a M90T and Escherichia coli O3 efficiently. Mutational analysis of the O-antigen assembly genes and LPS inhibition assays indicated that P1(S') transduction requires at least one O-antigen unit. E. coli O111:B4 LPS produced a high neutralising effect against P1(S') transduction, indicating that this E. coli strain could be susceptible to P1(S')-mediated transduction. Mutations in the O-antigen modification genes of S. flexneri 2a 2457O and S. flexneri 5a M90T did not cause significant changes to P1(S') transduction efficiency. A higher transduction efficiency of P1(S') improved the delivery of a cas9 antimicrobial phagemid into both S. flexneri 2457O and M90T. These findings provide novel insights into P1 tropism-switching, by identifying the bacterial strains which are susceptible to P1(S')-mediated transduction, as well as demonstrating its potential for delivering a DNA sequence-specific Cas9 antimicrobial into clinically relevant S. flexneri.

Keywords: O-antigen; P1 bacteriophage; S' tail fibre; Shigella flexneri; cas9 antimicrobial phagemid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteriophage P1* / genetics
  • Bacteriophage P1* / physiology
  • Escherichia coli* / genetics
  • Escherichia coli* / virology
  • O Antigens* / genetics
  • O Antigens* / physiology
  • Shigella flexneri* / genetics
  • Shigella flexneri* / virology
  • Transduction, Genetic*
  • Viral Tail Proteins* / genetics

Substances

  • O Antigens
  • S protein, Bacteriophage P1
  • Viral Tail Proteins