Dystrophin Restoration after Adeno-Associated Virus U7-Mediated Dmd Exon Skipping Is Modulated by Muscular Exercise in the Severe D2-Mdx Duchenne Muscular Dystrophy Murine Model

Am J Pathol. 2022 Nov;192(11):1604-1618. doi: 10.1016/j.ajpath.2022.07.016. Epub 2022 Sep 13.

Abstract

Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by Dmd mutations, resulting in the absence of dystrophin in skeletal muscle, and a greater susceptibility to damage during contraction (exercise). The current study evaluated whether voluntary exercise impacts a Dmd exon skipping and muscle physiology in a severe DMD murine model. D2-mdx mice were intramuscularly injected with an adeno-associated virus (AAV) U7 snRNA to correct Dmd reading frame, and allowed to voluntary run on a wheel for 1 month. Voluntary running did not induce muscle fiber regeneration, as indicated by the percentage of centronucleated fibers, Myh3 and Myh4 expression, and maximal force production, and thus possibly did not compromise the gene therapy approach. Voluntary running did not impact the number of viral genomes and the expression of U7 and Dmd 1 month after injection of AAV-U7 injected just before exercise initiation, but reduced the amount of dystrophin in dystrophin-expressing fibers from 80% to 65% of the muscle cross-sectional area. In conclusion, voluntary running did not induce muscle damage and had no drastic detrimental effect on the AAV gene therapy exon skipping approach in a severe murine DMD model. Moreover, these results suggest considering exercise as an additional element in the design and conception of future therapeutic approaches for DMD.