A conversion-type lithium artificial synapse with dispersed nano-silica fabricated by UV-curing method

Nanotechnology. 2022 Oct 7;33(50). doi: 10.1088/1361-6528/ac9286.

Abstract

The rapid growth of information puts forward new requirements for computer including denser memory capacity and faster response beyond the traditional von Neumann architecture. One promising strategy is to employ novel computing devices such as artificial synapses (AS). Here, an Au/LPSE-SiO2/Si AS (LPSE-SiO2AS) with a simple sandwich structure was fabricated by UV curing. LPSE-SiO2AS emulated synaptic plasticity including excitatory postsynaptic current, paired-pulse facilitation, and spike-dependent plasticity. It also simulated the memory strengthening and forgetting analogue to biological system. The realization of synaptic plasticity is due to the homogeneously dispersed nano-silica in LPSE, which acts as lithium ions trapping center and conducts a reversible electrochemical conversion reaction with Li ions with pulse stimulation. These results indicate the potential for LPSE-SiO2AS in future large-scale integrated neuromorphic networks.

Keywords: SiO2 nanoparticle; artificial synapse; lithium; synaptic plasticity.