The continuing evolution of barcode applications: Functional toxicology to cell lineage

Exp Biol Med (Maywood). 2022 Dec;247(23):2119-2127. doi: 10.1177/15353702221121600. Epub 2022 Sep 16.

Abstract

DNA barcoding is a method to identify biological entities, including individual cells, tissues, organs, or species, by unique DNA sequences. With the advent of next generation sequencing (NGS), there has been an exponential increase in data acquisition pertaining to medical diagnosis, genetics, toxicology, ecology, cancer, and developmental biology. While barcoding first gained wide access in identifying species, signature tagged mutagenesis has been useful in elucidating gene function, particularly in microbes. With the advent of CRISPR/CAS9, methodology to profile eukaryotic genes has made a broad impact in toxicology and cancer biology. Designed homing guide RNAs (hgRNAs) that self-target DNA sequences facilitate cell lineage barcoding by introducing stochastic mutations within cell identifiers. While each of these applications has their limitations, the potential of sequence barcoding has yet to be realized. This review will focus on signature-tagged mutagenesis and briefly discuss the history of barcoding, experimental problems, novel detection methods, and future directions.

Keywords: Barcoding; cell lineage; genome profiling; nanobioscience; next generation sequencing; toxicology.

Publication types

  • Review
  • Research Support, N.I.H., Extramural

MeSH terms

  • Cell Lineage / genetics
  • DNA Barcoding, Taxonomic* / methods
  • DNA*
  • Mutation

Substances

  • DNA