POLLEN WALL ABORTION 1 is essential for pollen wall development in rice

Plant Physiol. 2022 Nov 28;190(4):2229-2245. doi: 10.1093/plphys/kiac435.

Abstract

The integrity of pollen wall structures is essential for pollen development and maturity in rice (Oryza sativa L.). In this study, we isolated and characterized the rice male-sterile mutant pollen wall abortion 1 (pwa1), which exhibits a defective pollen wall (DPW) structure and has sterile pollen. Map-based cloning, genetic complementation, and gene knockout experiments revealed that PWA1 corresponds to the gene LOC_Os01g55094 encoding a coiled-coil domain-containing protein. PWA1 localized to the nucleus, and PWA1 was expressed in the tapetum and microspores. PWA1 interacted with the transcription factor TAPETUM DEGENERATION RETARDATION (TDR)-INTERACTING PROTEIN2 (TIP2, also named bHLH142) in vivo and in vitro. The tip2-1 mutant, which we obtained by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene editing, showed delayed tapetum degradation, sterile pollen, and DPWs. We determined that TIP2/bHLH142 regulates PWA1 expression by binding to its promoter. Analysis of the phenotype of the tip2-1 pwa1 double mutant indicated that TIP2/bHLH142 functions upstream of PWA1. Further studies suggested that PWA1 has transcriptional activation activity and participates in pollen intine development through the β-glucosidase Os12BGlu38. Therefore, we identified a sterility factor, PWA1, and uncovered a regulatory network underlying the formation of the pollen wall and mature pollen in rice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression Regulation, Plant
  • Oryza* / metabolism
  • Phenotype
  • Plant Proteins / metabolism
  • Pollen

Substances

  • Plant Proteins