Ferroelectric nematic liquid-crystalline phases

Phys Rev E. 2022 Aug;106(2-1):021001. doi: 10.1103/PhysRevE.106.021001.

Abstract

Recent experimental realization of ferroelectric nematic liquid crystalline phases stimulated material development and numerous experimental studies of these phases, guided by their fundamental and applicative interest. In this Perspective, we give an overview of this emerging field by linking history and theoretical predictions to a general outlook of the development and properties of the materials exhibiting ferroelectric nematic phases. We will highlight the most relevant observations to date, e.g., giant dielectric permittivity values, polarization values an order of magnitude larger than in classical ferroelectric liquid crystals, and nonlinear optical coefficients comparable with several ferroelectric solid materials. Key observations of anchoring and electro-optic behavior will also be examined. The collected contributions lead to a final discussion on open challenges in materials development, theoretical description, experimental explorations, and possible applications of the ferroelectric phases.