Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa

Nat Microbiol. 2022 Nov;7(11):1777-1790. doi: 10.1038/s41564-022-01212-x. Epub 2022 Sep 15.

Abstract

Members of Apicomplexa are defined by apical cytoskeletal structures and secretory organelles, tailored for motility, invasion and egress. Gliding is powered by actomyosin-dependent rearward translocation of apically secreted transmembrane adhesins. In the human parasite Toxoplasma gondii, the conoid, composed of tubulin fibres and preconoidal rings (PCRs), is a dynamic organelle of undefined function. Here, using ultrastructure expansion microscopy, we established that PCRs serve as a hub for glideosome components including Formin1. We also identified components of the PCRs conserved in Apicomplexa, Pcr4 and Pcr5, that contain B-box zinc-finger domains, assemble in heterodimer and are essential for the formation of the structure. The fitness conferring Pcr6 tethers the PCRs to the cone of tubulin fibres. F-actin produced by Formin1 is used by Myosin H to generate the force for conoid extrusion which directs the flux of F-actin to the pellicular space, serving as gatekeeper to control parasite motility.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins*
  • Apicomplexa*
  • Cytoskeleton
  • Humans
  • Protozoan Proteins / genetics
  • Toxoplasma* / genetics
  • Tubulin

Substances

  • Actins
  • Protozoan Proteins
  • Tubulin