Vibration assisted glass-formation in zeolitic imidazolate framework

J Chem Phys. 2022 Sep 14;157(10):104501. doi: 10.1063/5.0109885.

Abstract

A new glass forming method is essential for broadening the scope of liquid and glassy metal-organic frameworks due to the limitations of the conventional melt-quenching method. Herein, we show that in situ mechanical vibration can facilitate the framework melting at a lower temperature and produce glassy metal-organic frameworks (MOFs) with unique properties. Using zeolitic imidazolate framework (ZIF)-62 as a concept-proofing material, in situ mechanical vibration enables low-temperature melting at 653 K, far below its melting point (713 K). The resultant vibrated ZIF-62 glass exhibited a lower glass transition temperature of 545 K, improved gas accessible porosity, and pronounced short-to-medium range structures compared to the corresponding melt-quenched glass. We propose that vibration-facilitated surface reconstruction facilitates pre-melting, which could be the cause of the lowered melting temperature. The vibration assisted method represents a new general method to produce MOF glasses without thermal decomposition.