Synthesis of N-phenyl- and N-thiazolyl-1 H-indazoles by copper-catalyzed intramolecular N-arylation of ortho-chlorinated arylhydrazones

Beilstein J Org Chem. 2022 Aug 23:18:1079-1087. doi: 10.3762/bjoc.18.110. eCollection 2022.

Abstract

The broad application of 1H-indazoles has prompted the development of several approaches for the synthesis of such compounds, including metal-free, palladium-, or copper-promoted intramolecular N-arylation of in situ-generated or isolated o-haloarylhydrazones. Such methods mainly start from o-bromo derivatives due to the better yield observed when compared to those obtained from o-chloroarylhydrazones. However, the o-chloroarylaldehydes and o-chloroarylketones used to prepare the arylhydrazones are more commercially available and less expensive than brominated analogs. Seeking to cover a lack in the literature, this work reports a convenient protocol for the synthesis of N-phenyl- and N-thiazolyl-1H-indazoles by copper-catalyzed intramolecular N-arylation of o-chlorinated arylhydrazones. Therefore, a series of seven N-phenyl derivatives and a series of six novel N-thiazolyl derivatives was obtained in 10-70% and 12-35% yield, respectively, after stirring the o-chlorinated arylhydrazones, CuI, KOH, and 1,10-phenantroline for 12-48 hours in DMF at 120 °C. The products were isolated by column chromatography on silica gel. All products were fully characterized by HRMS as well as 1H and 13C NMR spectroscopy. Thus, this approach is valuable for promoting the synthesis of N-phenyl-1H-indazoles in a higher yield than that reported in the literature using copper catalysis and the same substrates. This study also prompted the first reported synthesis of pharmacologically interesting N-thiazolyl derivatives.

Keywords: N-heterocycles; fused-ring systems; hydrazones; indazoles; intramolecular cyclization.

Grants and funding

The authors acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarships to Y. C. M. Barbosa and G. C. Paveglio.