Tailoring Negative Thermal Expansion via Tunable Induced Strain in La-Fe-Si-Based Multifunctional Material

ACS Appl Mater Interfaces. 2022 Sep 28;14(38):43498-43507. doi: 10.1021/acsami.2c11586. Epub 2022 Sep 13.

Abstract

Zero thermal expansion (ZTE) composites are typically designed by combining positive thermal expansion (PTE) with negative thermal expansion (NTE) materials acting as compensators and have many diverse applications, including in high-precision instrumentation and biomedical devices. La(Fe1-x,Six)13-based compounds display several remarkable properties, such as giant magnetocaloric effect and very large NTE at room temperature. Both are linked via strong magnetovolume coupling, which leads to sharp magnetic and volume changes occurring simultaneously across first-order phase transitions; the abrupt nature of these changes makes them unsuitable as thermal expansion compensators. To make these materials more useful practically, the mechanisms controlling the temperature over which this transition occurs and the magnitude of contraction need to be controlled. In this work, ball-milling was used to decrease particles and crystallite sizes and increase the strain in LaFe11.9Mn0.27Si1.29Hx alloys. Such size and strain tuning effectively broadened the temperature over which this transition occurs. The material's NTE operational temperature window was expanded, and its peak was suppressed by up to 85%. This work demonstrates that induced strain is the key mechanism controlling these materials' phase transitions. This allows the optimization of their thermal expansion toward room-temperature ZTE applications.

Keywords: magnetocaloric materials; microstructuring; multifunctional materials; negative thermal expansion; phase transitions; strain.