Unveiling the Au Surface Reconstruction in a CO Environment by Surface Dynamics and Ab Initio Thermodynamics

J Phys Chem A. 2022 Sep 22;126(37):6538-6547. doi: 10.1021/acs.jpca.2c03124. Epub 2022 Sep 13.

Abstract

Surface reconstruction changes the atomic configuration of the metal surface and thus alters its intrinsic physical and chemical properties. Recent in situ experiments have shown a variety of surface reconstructions under reaction conditions, but how to effectively predict and characterize these structures remains challenging. Herein, we combine a DFT-based kinetic Monte Carlo simulation method and ab initio thermodynamics to explore the low-energy configurations of metal surface reconstructions, which takes the surface dynamics under the reactive environment into account. We systematically simulate 13 Au surfaces ((100), (110), (111), (210), (211), (221), (310), (311), (320), (321), (322), (331), and (332)) in the CO environment and identify 19 candidate reconstruction patterns driven by CO adsorption. The breakup of the original surfaces is attributed to the lateral interactions among the nearest-neighboring adsorbates. This work provides an efficient approach to unveil the reconstructed metal surface structures in reactive environments for guiding the experiments.