Chromosomal fragment deletion in APRR2-repeated locus modulates the dark stem color in Cucurbita pepo

Theor Appl Genet. 2022 Dec;135(12):4277-4288. doi: 10.1007/s00122-022-04217-6. Epub 2022 Sep 13.

Abstract

Cp4.1LG15g03420 (CpDsc-1), which encodes a two-component response regulator-like protein (APRR2) in the nucleus, influences dark green stem formation in Cucurbita pepo by regulating the chlorophyll content. Stem color is an important agronomic trait in zucchini (Cucurbita pepo) for robust seeding and high yield. However, the gene controlling the stem color has not been characterized. In this study, we identified a single locus accounting for the dark green stem color of C. pepo (CpDsc-1). Genetic analysis of this trait in segregated populations derived from two parental lines (line 296 with dark green stems and line 274 with light green stems) revealed that stem color was controlled by a single dominant gene (dark green vs. light green). In bulked segregant analysis, CpDsc-1 was mapped to a 2.09-Mb interval on chromosome 15. This region was further narrowed to 65.2 kb using linkage analysis of the F2 population. Sequencing analysis revealed a 14 kb deletion between Cp4.1LG15g03420 and Cp4.1LG15g03360; these two genes both encoded a two-component response regulator-like protein (APRR2). The incomplete structures of the two APRR2 genes and abnormal chloroplasts in line 274 might be the main cause of the light green phenotype. Gene expression pattern analysis showed that only Cp4.1LG15g03420 was upregulated in line 296. Subcellular localization analysis indicated that Cp4.1LG15g03420 was a nuclear gene. Furthermore, a co-dominant marker, G4563 (93% accuracy rate), and a co-segregation marker, Fra3, were established in 111 diverse germplasms; both of these markers were tightly linked with the color trait. This study provided insights into chlorophyll regulation mechanisms and revealed the markers valuable for marker-assisted selection in future zucchini breeding.

MeSH terms

  • Chromosome Mapping
  • Cucurbita* / genetics
  • Genetic Linkage
  • Methyl Green
  • Plant Breeding

Substances

  • Methyl Green