The evaluation of greenhouse gas emissions from sewage treatment with urbanization: Understanding the opportunities and challenges for climate change mitigation in China's low-carbon pilot city, Shenzhen

Sci Total Environ. 2023 Jan 10:855:158629. doi: 10.1016/j.scitotenv.2022.158629. Epub 2022 Sep 7.

Abstract

Sewage treatment provides a pathway for anthropogenic water purification that can address the growth in domestic sewage volumes due to urbanization and protect the aquatic environment. However, the process can also generate greenhouse gases (GHGs), which are sometimes termed "unrestricted" GHG emissions and are neglected by low carbon policies. A combination of a life cycle analysis (LCA), data envelopment analysis (DEA), and questionnaire survey was used to evaluate sewage treatment related GHG emissions and assess the GHG emission reduction efficiencies during 2005-2020, as well as determine the opinions of environmental managers regarding the threats to climate change mitigation posed by sewage treatment in the low carbon pilot city of Shenzhen, China. There were four main results. (1) GHG emissions from sewage treatment plants (STPs) in Shenzhen increased gradually from 0.22 Mt. CO2-eq in 2005 to 1.16 Mt. CO2-eq in 2020 with an emission intensity ranging from 0.41 to 0.58 kg CO2-eq/m3, mainly due to the indirect emissions from sludge disposal (35-57 %). Longgang administrative district was the hotspot of these GHG emissions during the study period. (2) Reductions in GHG emissions were achieved in most years since 2012 with the greatest efficiency observed in 2020. (3) Beyond the environmental managers' perceptions of the challenges in GHG mitigation, future sewage treatment may create the potential for more substantial GHG emission growth compared to the emissions from energy combustion, due to policy deficiencies, growth in sewage volumes, and the enforcement of stricter effluent quality control. (4) Several opportunities to overcome these barriers were considered including innovational environmental management, planting of constructed wetlands, and the promotion of water-saving behavior. This case study of Shenzhen has valuable implications for the synergistic governance of water pollution and climate change mitigation in megacities in China and elsewhere, enabling a move towards a future carbon-neutral society.

Keywords: Environmental management; Greenhouse gas emissions; Perceptions; Reduction efficiency; Sewage treatment; Shenzhen.

MeSH terms

  • Carbon
  • Carbon Dioxide / analysis
  • China
  • Cities
  • Climate Change
  • Greenhouse Effect
  • Greenhouse Gases*
  • Sewage
  • Urbanization

Substances

  • Greenhouse Gases
  • Sewage
  • Carbon
  • Carbon Dioxide