Development of an Image-Based Methodology for the Evaluation of Histopathological Features in Human Meningioma

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul:2022:3051-3054. doi: 10.1109/EMBC48229.2022.9871892.

Abstract

Meningioma is the most common intracranial tumor in adulthood. With a clear female predominance and a recurrence rate that reaches 20%, it is, despite being considered a benign tumor, a pathology that greatly compromises post-diagnosis quality of life. Its prone to recur or progress to a higher degree is difficult to predict in the absence of obvious histological criteria. This project aims to develop an automatic methodology to aid in the diagnosis of meningiomas that is objective and easily reproducible. The methodology is based on histopathological image analysis using artificial intelligence and machine learning algorithms. It includes a semi-automatic process of identification and cleaning of the scanned samples, an automatic detection of the nuclei of each image and, finally, the parameterization of the samples. The obtained data together with the clinical information will be analyzed using statistical methods in order to provide a methodology to support clinical diagnosis and decision-making in patient management. The result is the development of an effective methodology that generates a set of data associated with morphological parameters with different trends according to the pathological groups studied. A tool has been developed that allows an effective semiautomatic analysis of the images to evaluate these parameters in an objective and reproducible way, helping in clinical decision-making and facilitating to undertake projects with large sample series. Clinical Relevance- The main contribution of this project is in the field of neuropathology, for the diagnosis of meningiomas, the most common brain tumor. The present project provides an objective and quantifiable prognosis methodology for the meningiomas, offering a more precise monitoring of the treatment applied to the patient, resulting in a better prognosis and better quality of life.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Artificial Intelligence
  • Brain Neoplasms*
  • Female
  • Humans
  • Male
  • Meningeal Neoplasms* / diagnostic imaging
  • Meningeal Neoplasms* / pathology
  • Meningioma* / diagnostic imaging
  • Meningioma* / pathology
  • Quality of Life