Fast MRI Reconstruction: How Powerful Transformers Are?

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul:2022:2066-2070. doi: 10.1109/EMBC48229.2022.9871475.

Abstract

Magnetic resonance imaging (MRI) is a widely used non-radiative and non-invasive method for clinical interro-gation of organ structures and metabolism, with an inherently long scanning time. Methods by k-space undersampling and deep learning based reconstruction have been popularised to accelerate the scanning process. This work focuses on investigating how powerful transformers are for fast MRI by exploiting and comparing different novel network architectures. In particular, a generative adversarial network (GAN) based Swin transformer (ST-GAN) was introduced for the fast MRI reconstruction. To further preserve the edge and texture information, edge enhanced GAN based Swin transformer (EES-GAN) and texture enhanced GAN based Swin transformer (TES-GAN) were also developed, where a dual-discriminator GAN structure was applied. We compared our proposed GAN based transformers, standalone Swin transformer and other convolutional neural networks based GAN model in terms of the evaluation metrics PSNR, SSIM and FID. We showed that transformers work well for the MRI reconstruction from different undersampling conditions. The utilisation of GAN's adversarial structure improves the quality of images reconstructed when undersampled for 30% or higher. The code is publicly available at https://github.comJayanglab/SwinGANMR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Benchmarking
  • Electric Power Supplies*
  • Magnetic Resonance Imaging*
  • Neural Networks, Computer