Collisions Enhance Self-Diffusion in Odd-Diffusive Systems

Phys Rev Lett. 2022 Aug 26;129(9):090601. doi: 10.1103/PhysRevLett.129.090601.

Abstract

It is generally believed that collisions of particles reduce the self-diffusion coefficient. Here we show that in odd-diffusive systems, which are characterized by diffusion tensors with antisymmetric elements, collisions surprisingly can enhance the self-diffusion. In these systems, due to an inherent curving effect, the motion of particles is facilitated, instead of hindered by collisions leading to a mutual rolling effect. Using a geometric model, we analytically predict the enhancement of the self-diffusion coefficient with increasing density. This counterintuitive behavior is demonstrated in the archetypal odd-diffusive system of Brownian particles under Lorentz force. We validate our findings by many-body Brownian dynamics simulations in dilute systems.