Engineering Liquid-Vapor Phase Transition for Refreshable Haptic Interfaces

Research (Wash D C). 2022 Aug 19:2022:9839815. doi: 10.34133/2022/9839815. eCollection 2022.

Abstract

Haptics as a communication medium has been increasingly emphasized across various disciplines. Recent efforts have focused on developing various haptic stimulation technologies; however, most of them suffer from critical drawbacks stemming from their bulk, complexity, large power input, or high cost. Here, we describe a strategy to design portable and affordable refreshable haptic interfaces composed of an array of individually addressable and controllable liquid pouch motor-based haptic units embedded in either rigid or flexible substrates for different application contexts. The pouch motor filled with low boiling fluid, under a controlled manner, expands or contracts by Joule heating or cooling, enabling the haptic pin in contact to be protruded or retracted. Programming the actuation sequence of an array of haptic units enables the haptic interface to apply different stimuli to the skin to convey corresponding information. We finally demonstrate the applications to portable rigid braille displays and flexible epidermal VR devices. This study opens the avenue to the design of ubiquitous refreshable haptic interfaces that is portable, affordable, scalable, and uninjurious.