Silencing RNA for MMPs May Be Utilized for Cardioprotection

Cardiovasc Ther. 2022 Aug 24:2022:9729018. doi: 10.1155/2022/9729018. eCollection 2022.

Abstract

Ischemia/reperfusion (I/R) injury is accompanied by an increase of matrix metalloproteinase 2 (MMP-2) activity, which degrades heart contractile proteins. The aim of the study was to investigate the effect of MMP-2 small interfering RNA (MMP-2 siRNA) administration on I/R heart. Isolated rat hearts perfused by the Langendorff method were subjected to I/R in the presence or absence of MMP-2 siRNA. The hemodynamic parameters of heart function were monitored. Lactate dehydrogenase (LDH) activity was measured in coronary effluents. Activity and concentration of MMPs in the hearts were measured. Concentration of troponin I (TnI) in coronary effluents was examined as a target for MMP-2 degradation. Recovery of heart mechanical function was reduced after I/R; however, administration of MMP-2 siRNA resulted in restoration of proper mechanical function (p < 0.001). LDH activity was decreased after the use of MMP-2 siRNA (p = 0.02), providing evidence for reduced cardiac damage. Both MMP-2 and MMP-9 syntheses as well as their activity were inhibited in the I/R hearts after siRNA administration (p < 0.05). MMP-2 siRNA administration inhibited TnI release into the coronary effluents (p < 0.001). The use of MMP-2 siRNA contributed to the improvement of heart mechanical function and reduction of contractile proteins degradation during I/R; therefore, MMP-2 siRNA may be considered a cardioprotective agent.

MeSH terms

  • Animals
  • Heart
  • Matrix Metalloproteinase 2* / genetics
  • Matrix Metalloproteinase 2* / metabolism
  • Myocardial Reperfusion Injury* / genetics
  • Myocardial Reperfusion Injury* / metabolism
  • Myocardial Reperfusion Injury* / prevention & control
  • Myocardium / metabolism
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Rats
  • Troponin I / genetics

Substances

  • RNA, Small Interfering
  • Troponin I
  • Matrix Metalloproteinase 2