Human Umbilical Cord Mesenchymal Stem Cell-Derived Conditioned Medium Promotes Human Endometrial Cell Proliferation through Wnt/ β-Catenin Signaling

Biomed Res Int. 2022 Aug 30:2022:8796093. doi: 10.1155/2022/8796093. eCollection 2022.

Abstract

Purpose: Mesenchymal stem cells (MSCs) and their derivant are among the promising treatments for intrauterine adhesion (IUA); they have been reported to repair the endometrial injury by proliferating endometrial cells. However, the signal pathways involved are not clear. This study investigated the role of human umbilical cord mesenchymal stem cell-derived conditioned medium (hUCMSC-CM) in relieving IUA to find out whether Wnt/β-catenin signaling was involved, and if so, to determine the possible ligands.

Methods: After endometrial epithelial cells (EECs) were treated with hUCMSC-CM, their proliferation and migration were measured by the CCK8 assay and the scratch assay. The activation of Wnt/β-catenin signaling was measured by Western blots, fluorescent staining, and T-cell factor/lymphoid enhancer factor (TCF/LEF) luciferase. A Wnt inhibitor (XAV393) was used to inhibit the proliferation effect of hUCMSC-CM in EECs. Wnt5a expression in hUCMSC was measured by Western blots and fluorescent staining, and Wnt5a in hUCMSC-CM was detected by enzyme-linked immunosorbent assay (ELISA), to further clarify the mechanism.

Results: As shown by the CCK8 assay, hUCMSC-CM promoted proliferation and migration of EECs. The expression of β-catenin, c-myc, and cyclin D1 increased in EECs after being treated with hUCMSC-CM. Moreover, hUCMSC-CM was found to promote β-catenin delivery into nuclei by Western blot and fluorescent staining; meanwhile, the inhibitor (XAV393) could restrain this process and inhibit the effect of hUCMSC-CM on EEC proliferation. Wnt5a was detected in hUCMSCs and hUCMSC-CM, which might be a potential therapeutic target.

Conclusion: This study demonstrated that hUCMSC-CM promoted human endometrial cell proliferation through Wnt/β-catenin signaling, and Wnt5a might be a potential activator. This would be one of the activating signal pathways in the MSC-related treatment of IUA.

MeSH terms

  • Cell Proliferation
  • Culture Media, Conditioned / metabolism
  • Culture Media, Conditioned / pharmacology
  • Female
  • Humans
  • Mesenchymal Stem Cells* / metabolism
  • Umbilical Cord
  • Wnt Signaling Pathway
  • beta Catenin* / metabolism

Substances

  • Culture Media, Conditioned
  • beta Catenin