COVID-19 severity is associated with population-level gut microbiome variations

Front Cell Infect Microbiol. 2022 Aug 23:12:963338. doi: 10.3389/fcimb.2022.963338. eCollection 2022.

Abstract

The human gut microbiome interacts with many diseases, with recent small studies suggesting a link with COVID-19 severity. Exploring this association at the population-level may provide novel insights and help to explain differences in COVID-19 severity between countries. We explore whether there is an association between the gut microbiome of people within different countries and the severity of COVID-19, measured as hospitalisation rate. We use data from the large (n = 3,055) open-access gut microbiome repository curatedMetagenomicData, as well as demographic and country-level metadata. Twelve countries were placed into two groups (high/low) according to COVID-19 hospitalisation rate before December 2020 (ourworldindata.com). We use an unsupervised machine learning method, Topological Data Analysis (TDA). This method analyses both the local geometry and global topology of a high-dimensional dataset, making it particularly suitable for population-level microbiome data. We report an association of distinct baseline population-level gut microbiome signatures with COVID-19 severity. This was found both with a PERMANOVA, as well as with TDA. Specifically, it suggests an association of anti-inflammatory bacteria, including Bifidobacteria species and Eubacterium rectale, with lower severity, and pro-inflammatory bacteria such as Prevotella copri with higher severity. This study also reports a significant impact of country-level confounders, specifically of the proportion of over 70-year-olds in the population, GDP, and human development index. Further interventional studies should examine whether these relationships are causal, as well as considering the contribution of other variables such as genetics, lifestyle, policy, and healthcare system. The results of this study support the value of a population-level association design in microbiome research in general and for the microbiome-COVID-19 relationship, in particular. Finally, this research underscores the potential of TDA for microbiome studies, and in identifying novel associations.

Keywords: COVID-19; gut microbiome; population health; probiotics; topological data analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / genetics
  • Bifidobacterium
  • COVID-19* / epidemiology
  • Gastrointestinal Microbiome*
  • Humans