Effects of 5-Aza on neurogenesis contribute to learning and memory in the mouse hippocampus

Biomed Pharmacother. 2022 Oct:154:113623. doi: 10.1016/j.biopha.2022.113623. Epub 2022 Sep 7.

Abstract

Background: 5-Aza-2'-deoxycytidine (5-Aza-CdR) is a demethylating agent that has various biological effects related to DNA methylation. DNA methylation plays important roles in learning and memory. We have reported that 5-Aza-CdR improved the performance of mice in the water maze and step-down tests. Some behaviours have been well recognized to be mediated by neurogenesis in the hippocampus. The Notch signalling pathway plays a key role in adult hippocampal neurogenesis. In this study, we examined whether 5-Aza-CdR (DNA methyltransferase inhibitor) affects neurogenesis and Notch1 expression.

Methods: The learning and memory behaviour of mice was evaluated by a conditioned avoidance learning 24 h after 5-Aza-CdR treatment. The mRNA and protein expression levels of Notch1 and HES1 were measured by real-time PCR and Western blotting. The 5-bromo-2'-deoxyuridine (BrdU)-positive cells and the expression of Notch1 in the hippocampal DG were observed through laser confocal microscopy. To further clarify whether 5-Aza-CdR affects behaviour through neurogenesis, the expression level of Notch1, cell viability and cell cycle were analysed using the HT22 cell line.

Results: The behaviour in conditioned avoidance learning was improved, while neurogenesis and the Notch1 pathway were increased in the hippocampus of mice that were injected with 5-Aza-CdR. In vitro experiments showed that 5-Aza-CdR increased the expression of the Notch1 pathway and upregulated S-phase in the cell cycle and cell viability.

Conclusions: Our results suggest that the effect of 5-Aza-CdR on behaviour may be related to an increase in neurogenesis with upregulation of the Notch1 pathway in the hippocampus.

Keywords: 5-Aza-CdR; Learning and memory; Neurogenesis; Notch1.

MeSH terms

  • Animals
  • Azacitidine* / pharmacology
  • DNA Methylation
  • Decitabine / pharmacology
  • Hippocampus
  • Mice
  • Neurogenesis*

Substances

  • Decitabine
  • Azacitidine