LPV Control and Virtual-Sensor-Based Fault Tolerant Strategies for a Three-Axis Gimbal System

Sensors (Basel). 2022 Sep 3;22(17):6664. doi: 10.3390/s22176664.

Abstract

This paper deals with the LPV control of a three-axis gimbal including fault-tolerant capabilities. First, the derivation of an analytical model for the considered system based on the robotics Serial-Link (SL) theory is derived. Then, a series of simplifications that allow obtaining a quasi-LPV model for the considered gimbal is proposed. Gain scheduling LPV controllers with PID structure are designed using pole placement by means of linear matrix inequalities (LMIs). Moreover, exploiting the sensor redundancy available in the gimbal, a virtual-sensor-based fault tolerant control (FTC) strategy is proposed. This virtual sensor uses a Recursive Least Square (RLS) estimation algorithm and an LPV observer for fault detection and estimation. Finally, the proposed LPV control scheme including the virtual sensor strategy is tested in simulation in several scenarios.

Keywords: LMIs; LPV; PID; fault-tolerant control; gimbal; mechanical modelling; robotics; virtual sensor.

Grants and funding

This work has been co-financed by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project SaCoAV (ref. MINECO PID2020-114244RB-I00), by the European Regional Development Fund of the European Union in the framework of the ERDF Operational Program of Catalonia 2014-2020 (ref. 001-P-001643 Looming Factory) and by the DGR of Generalitat de Catalunya (SAC group ref. 2017/SGR/482). The author is also supported by a Industrial PhD AGAUR grant (Ref. 2019 DI 040).