HW/SW Platform for Measurement and Evaluation of Ultrasonic Underwater Communications

Sensors (Basel). 2022 Aug 29;22(17):6514. doi: 10.3390/s22176514.

Abstract

The purpose of this work is to present a flexible system that supports the study of wideband underwater acoustic communications (UAC). It has been developed both to measure channels and to test transmission techniques under realistic conditions in the ultrasonic band. This platform consists of a hardware (HW) part that includes multiple hydrophones, projectors, analog front-ends, acquisition boards, and computers, and a software (SW) part for the generation, reception, and management of acoustic sounding signals and noise. UAC channels are among the most hostile ones and exhibit an important attenuation and distortion, essentially due to both multipath propagation, which results in a very long channel impulse response, and time-varying behavior, which produces a notable Doppler spread. To cope with this challenging medium, sophisticated transmission techniques must be employed. In this sense, adequate signal processing algorithms have been designed aiming not only at the analysis and characterization of underwater communication channels but also at the evaluation of diverse modulation, detection, and coding schemes, from Orthogonal Frequency Division Multiplexing (OFDM) to single-carrier digital modulations with a single-input multiple-output (SIMO) configuration that takes advantage of diversity techniques. Wideband sounding signals, to be injected into the sea from the transmitter side, are created with patterns that allow multiple tests on a batch. With offline processing of the captured data at the receiver side, different trials can be carried out in a very flexible manner. The different aspects of the platform are described in detail: the HW equipment used, the SW interface to control acquisition boards, and the signal processing algorithms to estimate the UAC channel response. The platform allows the analysis and design of new proposals for underwater communications systems that improve the performance of the current ones.

Keywords: Doppler spread; MIMO; OFDM; broadband channel measurements; channel estimation; fading channels; filter bank; sounding signals; ultrasonic frequencies; underwater acoustic communications.

MeSH terms

  • Communication
  • Computers
  • Models, Theoretical*
  • Software
  • Ultrasonics*