A New Approach for Detecting Fundus Lesions Using Image Processing and Deep Neural Network Architecture Based on YOLO Model

Sensors (Basel). 2022 Aug 26;22(17):6441. doi: 10.3390/s22176441.

Abstract

Diabetic Retinopathy is one of the main causes of vision loss, and in its initial stages, it presents with fundus lesions, such as microaneurysms, hard exudates, hemorrhages, and soft exudates. Computational models capable of detecting these lesions can help in the early diagnosis of the disease and prevent the manifestation of more severe forms of lesions, helping in screening and defining the best form of treatment. However, the detection of these lesions through computerized systems is a challenge due to numerous factors, such as the characteristics of size and shape of the lesions, noise and the contrast of images available in the public datasets of Diabetic Retinopathy, the number of labeled examples of these lesions available in the datasets and the difficulty of deep learning algorithms in detecting very small objects in digital images. Thus, to overcome these problems, this work proposes a new approach based on image processing techniques, data augmentation, transfer learning, and deep neural networks to assist in the medical diagnosis of fundus lesions. The proposed approach was trained, adjusted, and tested using the public DDR and IDRiD Diabetic Retinopathy datasets and implemented in the PyTorch framework based on the YOLOv5 model. The proposed approach reached in the DDR dataset an mAP of 0.2630 for the IoU limit of 0.5 and F1-score of 0.3485 in the validation stage, and an mAP of 0.1540 for the IoU limit of 0.5 and F1-score of 0.2521, in the test stage. The results obtained in the experiments demonstrate that the proposed approach presented superior results to works with the same purpose found in the literature.

Keywords: Diabetic Retinopathy; YOLO; deep learning; fundus images; lesions detection.

MeSH terms

  • Algorithms
  • Diabetic Retinopathy* / diagnostic imaging
  • Fundus Oculi
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Neural Networks, Computer