Bio-Based Rigid Polyurethane Foams Modified with C-MOF/MWCNTs and TBPBP as Building Insulation Materials: Synergistic Effect and Corresponding Mechanism for Enhancing Fire and Smoke Safety

Polymers (Basel). 2022 Sep 2;14(17):3630. doi: 10.3390/polym14173630.

Abstract

Rigid polyurethane foams (RPUFs) as building insulation materials quickly burn and release a lot of heat, smoke, and carbon monoxide, and cause human safety risk and severe environmental pollution. To mitigate these disadvantages, MOF/MWCNTs were fabricated via mixing Cu ions' partly substituted framework of ZIF-67 and MWCNTs, and further calcinated MOF/MWCNTs (C-MOF/MWCTs) was newly generated by calcinating MOF/MWCNTs in air. Then, MOF/MWCNTs and C-MOF/MWCNTs were respectively employed together with a phosphorus-nitrogen-containing reactive flame retardant (TBPBP) to prepare renewable bio-based rigid polyurethane foam, including RPUF-T/MOF/MWCNTs 2 and RPUF-T/C-MOF/MWCNTs 2. The characterization results showed that RPUF-T/C-MOF/MWCNTs 2 had better performance than RPUF-T/MOF/MWCNTs 2 and neat RPUF. Compared to neat RPUF, the compressive strength, limiting oxygen index value, and the mass char residue in cone calorimetry test of RPUF-T/C-MOF/MWCNTs 2, respectively, were increased by 105.93%, 46.35%, and 347.32%; meanwhile, the total heat release rate, total smoke production, total carbon monoxide product, and total carbon dioxide product were reduced by 47.97%, 50.46%, 41.38%, 43.37%, respectively. This study provides a referable method for preparing RPUFs with good physical properties, fire, and smoke safety, which is favorable for human safety and environmental protection as new building insulation materials.

Keywords: C-MOF/MWCNTs; bio-based rigid polyurethane foam; building insulation materials; environmental protection; fire and smoke safety; phosphorus–nitrogen-containing reactive flame retardant (TBPBP).