Chlorophyll Detection by Localized Surface Plasmon Resonance Using Functionalized Carbon Quantum Dots Triangle Ag Nanoparticles

Nanomaterials (Basel). 2022 Aug 30;12(17):2999. doi: 10.3390/nano12172999.

Abstract

An optical sensor-based localized surface plasmon resonance (LSPR) sensor was demonstrated for sensitive and selective chlorophyll detection through the integration of amino-functionalized carbon quantum dots (NCQD) and triangle silver nanoparticles (AgNPs). The additions of amino groups to the CQD enhance the detection of chlorophyll through electrostatic interactions. AgNPs-NCQD composite was fabricated on the surface of the silanized glass slide using the self-assembly technique. The experimental results showed that the AgNPs-NCQD film-based LSPR sensor detects better than AgNPs and AgNPs-CQD films with a good correlation coefficient (R2 = 0.9835). AgNPs-NCQD showed a high sensitivity response of 2.23 nm ppm-1. The detection and quantification limits of AgNPs-NCQD are 1.03 ppm and 3.40 ppm, respectively, in the range of 0.05 to 6 ppm. Throughout this study, no significant interference was observed among the other ionic species (NO2-, PO4-, NH4+, and Fe3+). This study demonstrates the applicability of the proposed sensor (AgNPs-NCQD) as a sensing material for chlorophyll detection in oceans.

Keywords: carbon quantum dots; chlorophyll; optical sensor; silver nanoparticles; surface plasmon resonance.