The Role of Alternative Electron Pathways for Effectiveness of Photosynthetic Performance of Arabidopsis thaliana, Wt and Lut2, under Low Temperature and High Light Intensity

Plants (Basel). 2022 Sep 4;11(17):2318. doi: 10.3390/plants11172318.

Abstract

A recent investigation has suggested that the enhanced capacity for PSI-dependent cyclic electron flow (CEF) and PSI-dependent energy quenching that is related to chloroplast structural changes may explain the lower susceptibility of lut2 to combined stresses-a low temperature and a high light intensity. The possible involvement of alternative electron transport pathways, proton gradient regulator 5 (PGR5)-dependent CEF and plastid terminal oxidase (PTOX)-mediated electron transfer to oxygen in the response of Arabidopsis plants-wild type (wt) and lut2-to treatment with these two stressors was assessed by using specific electron transport inhibitors. Re-reduction kinetics of P700+ indicated that the capacity for CEF was higher in lut2 when this was compared to wt. Exposure of wt plants to the stress conditions caused increased CEF and was accompanied by a substantial raise in PGR5 and PTOX quantities. In contrast, both PGR5 and PTOX levels decreased under the same stress conditions in lut2, and inhibiting PGR5-dependent pathway by AntA did not exhibit any significant effects on CEF during the stress treatment and recovery period. Electron microscopy observations demonstrated that under control conditions the degree of grana stacking was much lower in lut2, and it almost disappeared under the combined stresses, compared to wt. The role of differential responses of alternative electron transport pathways in the acclimation to the stress conditions that are studied is discussed.

Keywords: PGR5; PTOX; alternative electron flows; carotenoid mutant; combined abiotic stress; cyclic electron transport; photoprotection.