Impacts from Waste Oyster Shell on the Durability and Biological Attachment of Recycled Aggregate Porous Concrete for Artificial Reef

Materials (Basel). 2022 Sep 2;15(17):6117. doi: 10.3390/ma15176117.

Abstract

Poor biological attachment of artificial reef (AR) prepared by the recycled aggregate limit the application in the area of marine engineering. In this study, the waste oyster shell (WOS) was used as raw materials to prepare the recycled aggregate porous concrete (RAPC), the compressive strength, split tensile strength, chloride penetration resistance, freezing-thawing resistance, low temperature resistance, and the biological attachment were tested, aiming to improve the biological attachment and decrease carbon dioxide emission. The experiment results demonstrate that the use of WOS can decrease the compressive and split tensile strength, but the effect of designed porous structure on the mechanical strength is higher than that of WOS. To ensure the durability of RAPC, the contents of WOS should not exceed 20%. Additionally, the addition of WOS and designed porous structure are beneficial to biological attachment. However, the porous structure of RAPC only improves biological attachment in the short term, and the reverse phenomenon is true in the long term. As the partial replacement of cement with WOS is 40%, the total carbon dioxide emission decreases by about 52%. In conclusion, the use of WOS in the RAPC is an eco-friendly method in the artificial reef (AR) with improved ecological attachment and reduced carbon dioxide emission.

Keywords: biological attachment; carbon dioxide emission; durability; recycled aggregate porous concrete; waste oyster shell.