Effect of Curing Temperature on the Properties of a MgO-SiO2-H2O System Prepared Using Dead-Burned MgO

Materials (Basel). 2022 Sep 1;15(17):6065. doi: 10.3390/ma15176065.

Abstract

The hydration of M-S-H prepared using silica fume (SF) and dead-burned MgO cured at 20 °C, 50 °C, and 80 °C was investigated, and the properties and performance of this M-S-H were measured. The formation of M-S-H was characterized using XRD, FTIR, TGA, and 29Si MAS-NMR. Results show that the compressive strength of paste prepared using MgO calcined at 1450 °C for 2 h reached 25 MPa after 28 d. The shrinkage of mortar made with low reactivity MgO was lower than that made with high reactivity MgO. The pH value of MgO/SF paste mixed with dead-burned MgO did not exceed 10.4 at room temperature. The shrinkage of M-S-H prepared using dead-burned MgO was less than that prepared using more active MgO, and its strength did not decrease over time. No (or only a small amount of) Mg(OH)2 was formed, which is why the strength of M-S-H prepared with dead-burned MgO continually increased, without decreasing. The promotion of curing temperature favor process of MgO hydration and is beneficial for degree of silica polymerization. The sample cured in 50 °C water showed the highest relative degree of reaction.

Keywords: curing temperature; hydration products; magnesium silicate hydrate; reactivity; silica fume.