BTO-Coupled CIGS Solar Cells with High Performances

Materials (Basel). 2022 Aug 25;15(17):5883. doi: 10.3390/ma15175883.

Abstract

In order to improve the power conversion efficiency (PCE) of Cu(In,Ga)Se2 (CIGS) solar cells, a BaTiO3 (BTO) layer was inserted into the Cu(In,Ga)Se2. The performances of the BTO-coupled CIGS solar cells with structures of Mo/CIGS/CdS/i-ZnO/AZO, Mo/BTO/CIGS/CdS/i-ZnO/AZO, Mo/CIGS/BTO/CdS/i-ZnO/AZO, Mo/CIGS/CdS/BTO/i-ZnO/AZO, Mo/CIGS/BTO/i-ZnO/AZO, Mo/CIGS/CdS/BTO/AZO, and Mo/ CIGS/CdS(5 nm)/BTO(5 nm)/i-ZnO/AZO were systematically studied via the SCAPS-1D software. It was found that the power conversion efficiency (PCE) of a BTO-coupled CIGS solar cell with a device configuration of Mo/CIGS/CdS/BTO/AZO was 24.53%, and its open-circuit voltage was 931.70 mV. The working mechanism for the BTO-coupled CIGS solar cells with different device structures was proposed. Our results provide a novel strategy for improving the PCE of solar cells by combining a ferroelectric material into the p-n junction materials.

Keywords: BaTiO3; CIGS solar cells; SCAPS simulation; ferroelectric materials; thin-film solar cells.