Cryostorage of Mesenchymal Stem Cells and Biomedical Cell-Based Products

Cells. 2022 Aug 29;11(17):2691. doi: 10.3390/cells11172691.

Abstract

Mesenchymal stem cells (MSCs) manifest vast opportunities for clinical use due both to their ability for self-renewal and for effecting paracrine therapeutic benefits. At the same time, difficulties with non-recurrent generation of large numbers of cells due to the necessity for long-term MSC expansion ex vivo, or the requirement for repeated sampling of biological material from a patient significantly limits the current use of MSCs in clinical practice. One solution to these problems entails the creation of a biobank using cell cryopreservation technology. This review is aimed at analyzing and classifying literature data related to the development of protocols for the cryopreservation of various types of MSCs and tissue-engineered structures. The materials in the review show that the existing techniques and protocols for MSC cryopreservation are very diverse, which significantly complicates standardization of the entire process. Here, the selection of cryoprotectors and of cryoprotective media shows the greatest variability. Currently, it is the cryopreservation of cell suspensions that has been studied most extensively, whereas there are very few studies in the literature on the freezing of intact tissues or of tissue-engineered structures. However, even now it is possible to develop general recommendations to optimize the cryopreservation process, making it less traumatic for cells.

Keywords: cryoprotector; mesenchymal stem cells; protocols for cryopreservation; scaffold; tissue.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Proliferation
  • Cryopreservation / methods
  • Freezing
  • Humans
  • Mesenchymal Stem Cells* / metabolism
  • Tissue Engineering

Grants and funding

The work was carried out within the framework of the program “Priority-2030”, by Minister of Science and Higher Education of the Russian Federation.