A Curcumin-BODIPY Dyad and Its Silica Hybrid as NIR Bioimaging Probes

Int J Mol Sci. 2022 Aug 23;23(17):9542. doi: 10.3390/ijms23179542.

Abstract

In this paper we describe the synthesis of a novel bichromophoric system in which an efficient photoinduced intercomponent energy transfer process is active. The dyad consists of one subunit of curcumin and one of BODIPY and is able to emit in the far-red region, offering a large Stokes shift, capable of limiting light scattering processes for applications in microscopy. The system has been encapsulated in MCM-41 nanoparticles with dimensions between 50 and 80 nm. Both the molecular dyad and individual subunits were tested with different cell lines to study their effective applicability in bioimaging. MCM-41 nanoparticles showed no reduction in cell viability, indicating their biocompatibility and bio-inertness and making them capable of delivering organic molecules even in aqueous-based formulations, avoiding the toxicity of organic solvents. Encapsulation in the porous silica structure directed the location of the bichromophoric system within cytoplasm, while the dyad alone stains the nucleus of the hFOB cell line.

Keywords: BODIPY; NIR probes; bichromophoric dyad; bioimaging; curcumin; luminescence.

MeSH terms

  • Boron Compounds / chemistry
  • Curcumin* / pharmacology
  • Nanoparticles* / chemistry
  • Silicon Dioxide

Substances

  • 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene
  • Boron Compounds
  • Silicon Dioxide
  • Curcumin

Grants and funding

FC gratefully acknowledges the financial support by the EPSRC (grant code EP/P015395/1).